Effects of clozapine and N-desmethylclozapine on synaptic transmission at hippocampal inhibitory and excitatory synapses.

نویسندگان

  • Takako Ohno-Shosaku
  • Yuto Sugawara
  • Chiho Muranishi
  • Keisuke Nagasawa
  • Kozue Kubono
  • Nami Aoki
  • Mitsuki Taguchi
  • Ryousuke Echigo
  • Naotoshi Sugimoto
  • Yui Kikuchi
  • Ryoko Watanabe
  • Mitsugu Yoneda
چکیده

Clozapine is the first atypical antipsychotic, and improves positive and negative symptoms of many patients with schizophrenia resistant to treatment with other antipsychotic agents. Clozapine induces minimal extrapyramidal side effects, but is more often associated with seizures. A large number of studies have been conducted to elucidate pharmacological profiles of clozapine and its major active metabolite, N-desmethylclozapine (NDMC). However, there are only a limited number of electrophysiological studies examining their effects on synaptic transmission. In this study, we examined effects of clozapine and NDMC on synaptic transmission by measuring inhibitory and excitatory postsynaptic currents in rat cultured hippocampal neurons. We found that clozapine and NDMC have qualitatively similar actions. They depressed the inhibitory transmission at 1-30 μM, and the excitatory transmission at 30 μM, the former being much more sensitive. The depression of IPSCs by 30 μM of these drugs was associated with an increase in the paired-pulse ratio. The GABA-induced currents were suppressed by these drugs, but less sensitive than IPSCs. The AMPA-induced currents were slightly potentiated by these drugs at 30 μM. At 30 μM, clozapine and NDMC slightly suppressed Ca(2+) and Na(+) channels. These results strongly suggest that clozapine and NMDC depress the inhibitory synaptic transmission mainly by antagonizing postsynaptic GABA(A) receptors, but at higher concentrations additionally by acting on presynaptic site, possibly in part through inhibition of presynaptic Ca(2+) and Na(+) channels. Preferential depression of inhibitory synaptic transmission by clozapine and NDMC might contribute to therapeutic actions and/or side-effects of clozapine.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex

Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...

متن کامل

The comparison of the effects of acute and repeated morphine administration on fast synaptic transmission in magnocellular neurons of supraoptic nucleus, plasma vasopressin levels, and urine volume of male rats

The activity of the magnocellular neurons (MCNs) of supraoptic nucleus (SON) is regulated by a variety of excitatory and inhibitory inputs. Opioids are one of the important compounds that affect these inputs at SON synapses. In this study, whole-cell patch clamp recording of SON neurons was used to investigate the effect of acute and repeated morphine administration on spontaneous inhibitory an...

متن کامل

The comparison of the effects of acute and repeated morphine administration on fast synaptic transmission in magnocellular neurons of supraoptic nucleus, plasma vasopressin levels, and urine volume of male rats

The activity of the magnocellular neurons (MCNs) of supraoptic nucleus (SON) is regulated by a variety of excitatory and inhibitory inputs. Opioids are one of the important compounds that affect these inputs at SON synapses. In this study, whole-cell patch clamp recording of SON neurons was used to investigate the effect of acute and repeated morphine administration on spontaneous inhibitory an...

متن کامل

Acute application of cholecystokinin and its effect on long-term potentiation induction at CA1 area of hippocampal formation in rat

Introduction: It has been demonstrated that cholecystokinin sulfated octapeptide (CCK-8s) can affect synaptic transmission in the hippocampus. Because one of the major experimental models to understand the events happening in synaptic plasticity is To Study the long-term potentiation (LTP), we decided to investigate the effect of concomitant administration of CCK-8s and tetanic stimulation of S...

متن کامل

Coordination of size and number of excitatory and inhibitory synapses results in a balanced structural plasticity along mature hippocampal CA1 dendrites during LTP.

Enlargement of dendritic spines and synapses correlates with enhanced synaptic strength during long-term potentiation (LTP), especially in immature hippocampal neurons. Less clear is the nature of this structural synaptic plasticity on mature hippocampal neurons, and nothing is known about the structural plasticity of inhibitory synapses during LTP. Here the timing and extent of structural syna...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Brain research

دوره 1421  شماره 

صفحات  -

تاریخ انتشار 2011